

Development of a Windows Device Driver for the

Nintendo Wii Remote
Entwicklung eines Windows Treibers für die Nintendo Wii Remote

Julian Löhr

School of Informatics

SRH Hochschule Heidelberg

Heidelberg, Germany

julian.loehr@outlook.com

Abstract—This paper is about the development of a device

driver for the Nintendo Wii Remote on Windows PC’s.

Keywords—Windows driver development, Wii Remote, human

interface device, game controller, Bluetooth

I. INTRODUCTION

Many PC games do support game controllers. The
Nintendo Wii Remote is a wireless controller for the Nintendo
Wii console and the Nintendo Wii U console. It features
several buttons, acceleration sensors and an infrared sensor.
Furthermore it is possible to expand the controller via an
additional port with various attachments. Those attachments
are, i.e. the Nunchuk, a controller with additional buttons and
acceleration sensors, a Classic Pro Controller, which is similar
to an Xbox 360 controller, and other expansions. Thus it seems
to be an alternative to other game controllers for controlling pc
games.

The Wii Remote uses Bluetooth for its wireless
communication and is thereby connectable with a pc[1].
Windows does recognize the Wii Remote as a game controller,
but as shown in Fig. 1 no inputs are exposed. Therefore it is not
usable without any third party support. There are various
programs to enable the Wii Remote to be used within video
games, but all of them just map the inputs to keyboard keys[2].
So this is useful for some single-player games, but does not
support analog input[2]. Additionally if multiple controllers are
needed, e.g. for local multiplayer games like FIFA, this
solution is not sufficient enough[2].

So the objective is to develop a device driver to enable it as
a native game controller. Its input shall be exposed for games
and multiple Wii Remote shall be distinguished.

II. PROBLEM

The Wii Remote communication is based on the Human
Interface Device (HID) protocol[1]. HID is a device class for
USB and Profile for Bluetooth and is used for input and output
devices operated by humans[3]. It is self-describing, meaning
every device tells the host via descriptors about his inputs and
outputs[3]. Therefore every device can have different layouts
but is operated by the same driver.

As in Table I, the Wii Remote violates this standard in
various ways. The major violation is the incomplete report
descriptor[1]. So Windows does know it is a game controller,
but has no information about its layout. Further violations are
that only the interrupt channel is used[1]. The interrupt channel
is designed to only carry input and output reports[4]. But the
Wii Remote uses some output reports for calibration[1],
whereas feature reports should be used for that[4]. Those
feature reports in turn must be send via the control channel[4].
Additionally the Wii Remote uses an output report to request
an input report[1]. For that kind of action the standard state a
GET_REPORT Message[4]. At last when either an expansion
is connected or removed, the Wii Remote waits for a specific
output report[1]. Until that report is received the device won’t
send any input reports anymore[1]. Such behavior is not
designated by HID. Those violations render the default HID
driver inoperative.

Fig. 1 Test mask of the preferences dialog for the Wii Remote with default

driver

TABLE I. WII REMOTE HID VIOLATIONS

Wii Remote Behavior HID Standard Violation

Report Descriptor states

only sizes but no content

Report Descriptor
incomplete

Output Reports used for

calibration

Feature Reports should be
used for that; Feature
Reports must be sent via
the Control Channel

Only uses Interrupt

Channel

Interrupt Channel is
designed to only carry
Input and Output Reports

Output Report used to

request an Input Report

GET_REPORT Message
should be used

On connecting or removing

expansions, an specific

Output Report is awaited.

Such behavior is not part of
HID

III. FINDING A SOLUTION

To enable the game controller functionality the driver shall
intercept and correct the communication somewhere in the
driver stack so it conforms HID.

A. Driver Stack Basics

At first the current driver stack of the Wii Remote was
observed to find possible driver locations. A driver stack
consists of multiple device nodes. Each device node represents
a hardware device or one of its features, meaning a hardware
device can be represented by multiple device nodes. As in Fig.
1 those device nodes are at least composed of a Function
Driver Object (FDO) and a Physical Device Object (PDO)[5].

The FDO is the data representation of the function driver,
which in turn is the main driver for that device node. The PDO
is FDO of the underlying device node, establishing a
connection between parent and child nodes in the stack[6].

 Each function driver can be extended by a minidriver.
Minidrivers shall handle device specific behavior and features,
whereas the Function Driver might be a generic driver[7].

Between the FDO and PDO a filter driver can be placed.
Filter drivers are meant to intercept and alter the
communication between those device nodes[5].

B. Wii Remote Driver Stack

In Fig. 2 the default driver stack for the Wii Remote is
shown.

At the bottom is the Bluetooth Enumerator node. It is the
top end of the Bluetooth stack, representing the Bluetooth bus,
which enumerates connected devices.

In the middle is the Bluetooth HID-Device, which is
representing the Bluetooth Profile of the connected device, i.e.
the Wii Remote. Its function driver is the HID Class driver
with the Bluetooth minidriver. The HIDClass.sys driver
implements the generic HID behavior, whereas HidBth.sys
utilizes the Bluetooth specific communication.

On top is the HID-conformal game controller device. It is
the exposed game controller part of the Wii Remote. This
device node has no observable function driver. It was assumed
that Windows retrieves the input information from that node.

C. The Attempts

 Four attempts were devised based on the observable
default driver stack for the Wii Remote.

1) First Attempt

The first attempt was to use a User Mode Driver
Framework (UMDF) HID minidriver for the HID-conformal
game controller, see number 1 in Fig. 2. This attempt failed
because all read attempts were answered by
STATUS_NOT_SUPPORTED.

2) Second Attempt

The second one was like the first one but to use an UMDF
HID filter driver instead, see number 1 in Fig. 2. This failed as
well as passing by the request resulted in a status code
STATUS_NO_SUCH_PRIVILEGE.

Fig. 2: Observable default driver stack for the Wii Remote

3) Third Attempt

Another attempt was to use a Kernel Mode Driver
Framework (KMDF) filter driver between the HID Class driver
and the Bluetooth bus driver (Bthenum.sys), see number 2 in
Fig. 2. But it was not possible to load the filter driver and the
default HID Class driver, at the same time.

4) Fourth Attempt

The last attempt was to replace the HidBth minidriver, see
number 3 in Fig. 2, with a self-implemented KMDF minidriver.
It was possible to successfully open a communication channel
to the Wii Remote and exchange reports. Furthermore passing
report descriptors and reports to the HID Class driver
succeeded as well. Therefore this attempt was chosen as an
appropriate solution.

IV. DRAFT

The conceived driver consists of three layers, seen in Fig. 3.
The lowest layer abstracts the Bluetooth communication. In the
middle is a layer, which handles all Wii remote specific things
like parsing Wii Remote reports and responding with
appropriate ones. The top layer is in charge of processing
requests from the HID Class driver. Aside from that is a fourth
part called Device. Its purpose is to handle all communication
with the Plug and Play Manager and Power Management.
Those Layers are described in the following sections.

A. Bluetooth Layer

At the bottom is the Bluetooth layer. It implements the
Bluetooth communication, i.e. opening and closing the
communication channel and sending and receiving reports
from and to the Wii Remote.

To communicate with the Bluetooth device a Logical Link
Control and Adaption (L2CAP) Channel is used. It is opened
on startup and then a continuous reader is started. A continuous
reader is an endless loop of sending out a read request. These
read requests are blocking, meaning a request will only be
completed in case of an error or when new data is available. In
the case of an error the Wii Remote is considered as gone. The
loop will terminate and the Device section shall be notified to
signal the Plug and Play (PnP) Manager that the device was

removed. The problem is that the PnP Manager won’t
recognize elsewhere the Wii Remote is gone, i.e. powered off,
batteries dead or out the Bluetooth range. The only hint is that
the L2CAP Channel is closed and the read request will return
with an error. Apart from that new data is forwarded to the
Wiimote layer to be processed. After processing, the read
request is send out again to receive the next data.

B. Wiimote Layer

The middle layer is Wiimote. It handles all Wii Remote
specific features and caches the current state. The layer is
receiving input reports from the Bluetooth layer and processes
them.

Wii Remote data reports (ID 0x30 – 0x3f) are containing
input data. When receiving one of those the cached state is
updated and the HID layer is notified about the input changes.

Status information (ID 0x20) contains generic information
about the current state, i.e. battery level and the kind of
connected extension. It is send by the Wii Remote on request
or when the extension changes. First of all the battery level is
updated. The four LEDs on the Wii Remote shall represent the
current battery level. For that purpose a battery timer shall be
implemented. It requests a status information message every
minute to check if the battery level changed. On receiving a
status information message the timer is reset. If the battery
level is very low, i.e. only one LED left, the timer is stopped.
After processing the battery level, it is checked whether the
extension has changed. If so the report mode is set and the
possible extension is initialized.

C. HID Layer

The top layer is called HID and it processes incoming
requests from HID Class. It is composed of a default I/O
queue, a read request buffer queue and a flag signaling if a new
read request is processed immediately.

The default I/O queue receives any new requests. Only the
internal device control request packages are processed, because
those will contain I/O Control Codes (IOCTL), which in turn
are used to get the report descriptor and the input reports. All
other requests are processed by the framework. The important
IOCTL is IOCTL_HID_READ_REPORT, which requests a
new input report from the device. HID Class uses interrupt
requests to retrieve changes in the input, meaning it sends out a
read request to retrieve a new input report. When it is
answered, it will send out another read report request
immediately. To fulfill such behavior the read request buffer
queue is used to buffer read request. Only when the Wiimote
layer signals it has changed it state, the read request will be
processed and completed. Processing the read request means
parsing the current Wiimote state and creating an appropriate
input report for HID Class. In case the Wiimote state changes
when there is no read request currently buffered, a flag is used
to signal whether a newly received read request shall be
processed and completed immediately. Else an input change
would be delayed until the input changes again, resulting in the
delay or drop of the first input.

Fig. 3: Layout of the driver with its layers

D. Device

The Device part communicates with the PnP Manager and
the Power Management. It is the entry point for a newly
connected device, creating and initializing all other layers.
Moreover it will forward any events and changes of the device
status to the layers. Evaluation

A basic implementation was made following the draft,
featuring the eleven core buttons. The Implementation was
made with the Windows Driver Kit 8 and Version 1.11 of the
Windows Driver Framework. The driver was tested on
Windows 7 and 8. For the test the input test mask of the game
controller preferences dialog, as shown in Fig. 4, was used. All
input was signaled without delay and in time. There were no
errors while testing. So even the driver was not fully
implemented, it proves the draft.

Because the driver only exposes the Wii Remote to the
DirectInput API, it only works for older games. Modern games
are using the XInput API, which is giving access to Xbox 360
Controllers. So it is not possible to control modern games with
this driver.

Another flaw is the lack of driver signing. A code signing
certificate cost money. Without being signed, the usage of a
driver is difficult, because Windows won’t load it. To use it
anyway, the driver signing validation has to be turned off every
time the driver will be used. However this can be resolved by
acquiring such code signing certificate.

V. OUTLOOK

A proper und full implementation of the driver combined
with the driver being signed would be a proper alternative for
older game controllers and capable to be used to control pc
games. It would have the capability to be used by a broad user
base.

One idea, which emerged through this paper, is to develop
another draft or refactor the current draft, so the Wii Remote is
recognized as an Xbox 360 controller. This may require reverse
engineering the XUSB Driver.

Another idea is to use this draft for the Wii U Gamepad or
Wii U Pro Controller. Especially the Wii U Pro Controller is
very similar to the Xbox 360 controller.

REFERENCES

[1] WiiBrew. Wiimote [Online]. Availabe: http://wiibrew.org/wiki/Wiimote
[Accesed: 29.09.2013 23:06]

[2] J Löhr, „Wii Remote am Windows PC: Analyse und Vergleich
verschiedener Programme und Libraries,“ unpublished.

[3] Universal Serial Bus (USB): Device Class Definition for Human
Interface Devices (HID), Version 1.11, 2001.

[4] HUMAN INTERFACE DEVICE PROFILE 1.1, Revision V11, 2012.

Microsoft Corporation. Device nodes and device stacks [Online].
Available: http://msdn.microsoft.com/en-us/library/windows/hardware/
ff554721(v=vs.85).aspxf [Accessed: 02.10.2013 11:48].

[5] Microsoft Corporation. Driver stacks [Online]. Available:
http://msdn.microsoft.com/en-us/library/windows/hardware/
hh439632(v=vs.85).aspx [Accessed: 02.10.2013 12:01].

[6] Microsoft Corporation. Minidrivers, Miniport drivers, and driver pairs
[Online]. Available: http://msdn.microsoft.com/en-us/library/windows/
hardware/hh439643(v=vs.85).aspx [Accessed: 02.10.2013 13:15].

Fig. 4: Test mask of the preferences dialog of the Wii Remote with the

implemented driver installed

